# From Benjamin Franklin to Peter Collinson, 1752

# To Peter Collinson

Printed in Benjamin Franklin, Experiments and Observations on Electricity (London, 1769), pp. 350–4; also draft (fragment): American Philosophical Society.

The earliest surviving reference to Franklin’s magic squares and circles is in a letter from James Logan, January 12, 1750 (see above, III, 458), asking him to bring copies of his work to Stenton. Actually, Franklin had first contrived such things as early as 1736–37, when he was clerk of the Pennsylvania Assembly, and needed to while away the tedium of formal business and debates. Logan was so impressed with his inventions that he told Collinson about them (see above, III, 471); Collinson asked Franklin for examples; and Franklin replied with the following letter.

More than a dozen years later Franklin gave copies of his magic square and circle (see below, pp. 397, 401), with his descriptions of them, to the English mathematician James Ferguson, who printed them, with Franklin’s permission, in 1767.2 Franklin’s letter to Collinson was first published as Letter XXVII in the 1769 edition of the Experiments and Observations, but the illustrative plate of the magic square of 16 contained two typographical errors. One of these was corrected in the 1774 edition of the Experiments; both figures were correctly printed in Dubourg’s translation of Franklin’s works, 1773; and the square is correctly printed here, as it was by Ferguson.3

[1752?]4

Sir,

According to your request, I now send you the Arithmetical Curiosity, of which this is the history.

Being one day in the country, at the house of our common friend, the late learned Mr. Logan, he shewed me a folio French book, filled with magic squares, wrote, if I forget not, by one M. Frenicle,5 in which he said the author had discovered great ingenuity and dexterity in the management of numbers; and, though several other foreigners had distinguished themselves in the same way, he did not recollect that any one Englishman had done any thing of the kind remarkable.

I said, it was, perhaps, a mark of the good sense of our English mathematicians, that they would not spend their time in things that were merely difficiles nugae, incapable of any useful application. He answered, that many of the arithmetical or mathematical questions, publickly proposed and answered in England, were equally trifling and useless. Perhaps the considering and answering such questions, I replied, may not be altogether useless, if it produces by practice an habitual readiness and exactness in mathematical disquisitions, which readiness may, on many occasions, be of real use. In the same way, says he, may the making of these squares be of use. I then confessed to him, that in my younger days, having once some leisure, (which I still think I might have employed more usefully) I had amused myself in making these kind of magic squares, and, at length, had acquired such a knack at it, that I could fill the cells of any magic square, of reasonable size, with a series of numbers as fast as I could write them, disposed in such a manner, as that the sums of every row, horizontal, perpendicular, or diagonal, should be equal; but not being satisfied with these, which I looked on as common and easy things, I had imposed on myself more difficult tasks, and succeeded in making other magic squares, with a variety of properties, and much more curious. He then shewed me several in the same book, of an uncommon and more curious kind; but as I thought none of them equal to some I remembered to have made, he desired me to let him see them; and accordingly, the next time I visited him, I carried him a square of 8, which I found among my old papers, and which I will now give you, with an account of its properties.

52 61 4 13 20 29 36 45 14 3 62 51 46 35 30 19 53 60 5 12 21 28 37 44 11 6 59 54 43 38 27 22 55 58 7 10 23 26 39 42 9 8 57 56 41 40 25 24 50 63 2 15 18 31 34 47 16 1 64 49 48 33 32 176

The properties are,

1. That every strait row (horizontal or vertical) of 8 numbers added together, makes 260, and half each row half 260.

2. That the bent row of 8 numbers, ascending and descending diagonally, viz. from 16 ascending to 10, and from 23 descending to 17; and every one of its parallel bent rows of 8 numbers, make 260. Also the bent row from 52, descending to 54, and from 43 ascending to 45; and every one of its parallel bent rows of 8 numbers, make 260. Also the bent row from 45 to 43 descending to the left, and from 23 to 17 descending to the right, and every one of its parallel bent rows of 8 numbers make 260. Also the bent row from 52 to 54 descending to the right, and from 10 to 16 descending to the left, and every one of its parallel bent rows of 8 numbers make 260. Also the parallel bent rows next to the above-mentioned, which are shortened to 3 numbers ascending, and 3 descending, &c. as from 53 to 4 ascending, and from 29 to 44 descending, make, with the 2 corner numbers, 260. Also the 2 numbers 14, 61 ascending, and 36, 19 descending, with the lower 4 numbers situated like them, viz. 50, 1, descending, and 32, 47, ascending, make 260. And, lastly, the 4 corner numbers, with the 4 middle numbers, make 260.

So this magical square seems perfect in its kind. But these are not all its properties; there are 5 other curious ones, which, at some other time, I will explain to you.7

Mr. Logan then shewed me an old arithmetical book, in quarto, wrote, I think, by one Stifelius,8 which contained a square of 16, that he said he should imagine must have been a work of great labour; but if I forget not, it had only the common properties of making the same sum, viz. 2056, in every row, horizontal, vertical, and diagonal. Not willing to be out-done by Mr. Stifelius, even in the size of my square, I went home, and made, that evening, the following magical square of 16, which, besides having all the properties of the foregoing square of 8, i.e. it would make the 2056 in all the same rows and diagonals, had this added, that a four square hole being cut in a piece of paper of such a size as to take in and shew through it, just 16 of the little squares, when laid on the greater square, the sum of the 16 numbers so appearing through the hole, wherever it was placed on the greater square, should likewise make 2056. This I sent to our friend the next morning, who, after some days, sent it back in a letter, with these words: “I return to thee thy astonishing or most stupendous9 piece of the magical square, in which”—but the compliment is too extravagant, and therefore, for his sake, as well as my own, I ought not to repeat it. Nor is it necessary; for I make no question but you will readily allow this square of 16 to be the most magically magical of any magic square ever made by any magician.

I did not, however, end with squares, but composed also a magick circle, consisting of 8 concentric circles, and 8 radial rows, filled with a series of numbers, from 12 to 75,1 inclusive, so disposed as that the numbers of each circle, or each radial row, being added to the central number 12, they made exactly 360, the number of degrees in a circle; and this circle had, moreover, all the properties of the square of 8. If you desire it, I will send it; but at present, I believe, you have enough on this subject. I am, &c.

B.F.

2. James Ferguson, Tables and Tracts, relative to Several Arts and Sciences (London, 1767), pp. 309–12. These diagrams and descriptions were reprinted in Gent. Mag., XXXVIII (1768), 313, 456. On June 21, 1768 (Pa. Gaz., Sept. 1, 1768), Rev. John Ewing, later provost of the University of Pennsylvania, read a paper to APS, in which he censured BF for concealing the principles on which he constructed his squares. On September 5, in Pa. Chron., an anonymous correspondent took issue with Ewing, quoting Ferguson’s remark (p. 309) that the reason he (Ferguson) did not know BF’s rules was that he had never asked for them, although BF was the most communicative man he ever knew.

3. Barbeu Dubourg, Oeuvres de M. Franklin (Paris, 1773), II, facing p. 12. Albert Chandler noted (and corrected) four errors in BF’s magic square of 16 as reproduced by Smyth (Writings, II, facing p. 458), only two of which were Smyth’s; the others appeared in the 1769 edition of Exper. and Obser. “Benjamin Franklin’s ‘Magical Square of 16,’” Jour. Franklin Inst., CCLI (1951), 415–22. BF’s principles for constructing his squares are analyzed by Chandler, and, in greater detail, by Clarence C. Marder, The Magic Squares of Benjamin Franklin (mimeographed, Brick Row Book Shop, Inc., N.Y., 1940).

4. Undated in Exper. and Obser. and by BF’s earlier editors, this letter was tentatively dated 1750 by Smyth (Writings, II, 456). Because of the reference to “the late learned Mr. Logan,” who died Oct. 31, 1751, the present editors suggest 1752 as a more likely date.

5. Bernard Frénicle de Bessy, Traité des Triangles Rectangles en nombres (Paris, 1676), reprinted in Divers Ouvrages de Mathématique et de Physique, par Messieurs de l’ Académie Royale des Sciences.

6. This square is reproduced on plate II of Exper. and Obser., 1769 edit., facing p. 226.

7. Among his papers in APS (LXIX, 104) is a scrap on which BF made a similar square:

17 47 30 36 21 43 26 40 32 34 19 45 28 38 23 41 33 31 46 20 37 27 42 24 48 18 35 29 44 22 39 25 49 15 62 4 53 11 58 8 64 2 51 13 60 6 55 9 1 63 14 52 5 59 10 56 16 50 3 61 12 54 7 57

On May 29, 1765, he sent John Canton two squares, of 6 and 4, which he said were harder to make than the squares of 8 and 16.

8. Michael Stifelius, Arithmetica Integra (Nuremberg, 1544).

9. The draft fragment begins at this point.

1. In draft: “from 13 to 76.”